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The conventional relations for dispersion in tubes and ducts are inappropriate for radial flows such as are 
found in the disc-stack and pump cells. A first-order mathematical model is therefore developed for 
radial flow between infinite parallel planes. The shapes of the predicted responses to pulses of injected 
material are shown to be in qualitative agreement with experimental curves, however the form of the 
mathematical expression is inappropriate for routine data analysis. Nevertheless simple relationships are 
derived which enable the dispersion coefficient and mean residence time of an electrogenerated species 
to be determined from the first and second moments of  the response and a knowledge of the geometry 
of the system. In Part II experimental data are analysed in detail with the aid of the model; however, it 
is clear that an improved model is of a three-phase flow, a slow phase creeping along either plane with a 
faster 'core' flow in between. 

List of Symbols 1. Introduction 

c concentration (mol cm -3) 
dispersion coefficient (cm 2 s- 1) 

h interelectrode gap (cm) 
M1 normalized first moment of the 

response defined by Equation 28 
342 normalized second moment of the 

response, defined by Equation 29 
Q = V/h volumetric flow rate per unit height 

of gap (cm 2 s -1) 

q = (s lY)  1/2 (cm) 
r radius (cm) 
s Laplace transform parameter (s- l)  
t time (s) 

V volumetric flow rate per unit height 
x = ( r -  ri)/2(ff)t) a/2 dimensionless distance 
v = Q/(4rrD) 
x = r ( s / ~ )  '~2 

~- = M1 mean residence time of 
marked material(s) 

Subscripts 

i inner 
o outer 

A number of cells with radial outflow (source 
flow) of electrolyte between parallel planes are in 
industrial use or under laboratory investigation; 
these include the well-known capillary gap cell of 
Beck and Guthke [1], now often called the disc- 
stack cell, the electrochemical pump cell [2, 3] 
and the rotating electrolyser [4]. Whether or not 
the electrodes have rotational motion, all these 
cells have in common the deceleration of the radial 
component of flow due to the increase in channel 
cross-sectional area with radius, which can have 
an important effect upon the specificity of some 
synthetic reactions [5, 6]. Further, the specificity 
where competing reactions occur is strongly a 
function of local conditions, such as species 
concentration and pH, and is therefore tied to the 
prevailing transport conditions [6]. In fact the 
chemical and transport rates are coupled, as in 
combustion. 

Under creeping flow conditions in a capillary 
gap cell [7] the only transport process in 
operation is molecular diffusion, which is slow 
and leads to high concentrations of electro- 
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generated species close to an electrode surface, 
favouring reactions o f  high order. Where competing 
reactions can occur it would be surprising if the 
same distribution of products was obtained at 
high and low flow rates, since the mixing regimes 
are different in these two cases. Likewise, in the 
pump cell, where the predominant transport 
mechanism is turbulent dispersion induced by the 
tangential shear, a different distribution of 
products is obtained from that for a geometrically 
identical capillary gap cell operating at the same 
volumetric flow rate [6]. 

Generally it has not been recognised explicitly 
that the outcome of a particular synthetic reaction 
in a particular cell may depend upon the coupling 
of chemical and transport rates, so that a reaction 
which fails in one kind of cell may succeed in 
another, simply due to one cell having a more 
favourable reaction environment. A prerequisite 
for further advance in this respect is information 
on the magnitudes of dispersion and mixing 
processes in technical cells. Using an electro- 
chemical analogue [9] of  the marker pulse tech- 
nique of chemical engineering [11 ] it is possible to 
obtain a measure of  dispersion in electrochemical 
systems with comparative ease [8, 9, 12]. The 
results, however, are only quantitatively analysable 
with the aid of an appropriate mathematical model 
for the reactor. 

The mathematical modelling of dispersion in 
reacting radial source flow is extremely difficult, 
requiring effectively the simultaneous solution of 
the full Navier-Stokes and time-dependent 
transport and chemical rate equations. As a first 
step in tackling this problem it was decided to 
adopt the simplest possible mathematical model 
which would represent the time-history of a 
marker pulse so that the reaction environment in 
cells with radial flow could at least be classified. 
It was also expected that, as in the case of con- 
ventional reaction engineering, trends in exper- 
imental data analysed with the aid of  the simplest 
model would suggest improvements which could 
be made to give an adequate description of the 
reaction environment without the need to solve 
the full, coupled problem. 

The development of  the mathematical model 
is discussed in Part I of  this paper; experimental 
data analysed with its aid are discussed in detail 
in Part II. 

2. Model 

Consider the radial outflow of electrolyte between 
infinite parallel planes (Fig. 1). Normally there is 
a velocity distribution in the axial direction, z, 
due to viscous drag at the bounding planes, but 
the model adopted in this exploratory work is of 
dispersive radial plug flow, i.e. all fluid elements 
at the same radius are assumed to move with the 
same average speed regardless of  their distances 
from the bounding planes (electrodes), and the 
effects of  the real velocity gradient are lumped 
together with the effects of fluctuations into a 
term representing dispersion in the radial direction. 
(The latter will be called 'radial dispersion' since, 
in this co-ordinate system, the axial direction is 
not the direction of mean mass flow.) I f  the 
volumetric flow rate per unit height of inter- 
electrode gap is Q, then, at any distance r >  re, the 
equation of continuity gives 

u(r) = Q/27rr (1) 

and a mass balance on any annular control volume 
27rrdrAz for any species of local concentration 
c(r) at r = r, in the absence of reaction, gives, 

ac - a 2 c  D a c  Q ac 
at - D a-Tr (2) r a r  27rr ar 

where/3 represents the radial dispersion 
coefficient, i.e. in the direction of mean flow. 

If  the concentration of marker species is 
injected uniformly at r = r i, the initial condition 
is normally 

c = 0 ,  0 < r < ~  (3) 

so that, on Laplace transforming Equation 2, one 
obtains 

zt_. 
r 

I 
w 

q l  ' I I 
I 

I =  r i j  I 

i r f 
I 

i j 
j~ r+dr ~ i 

I 

b, ro 
I 

I I  I 

Fig. 1. Co-ordinate system for radial source flow between 
infinite parallel planes. 
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d28 [1  Q \ d E  s ) e = 0  
r 2~r/) ~ r r - - ~  

which may be written as 

dr 2 + ~ r r - - ~ c  = 0 

if u = Q/4zrs 

To simplify Equation 5 let 

when 

Kv(X) = �89 mr)- '  [I_v(X)--Iv(X)] 
(4) 

and (1.2) 
/ 

Iv(h) = Z (X/2)v+2n/n!P( u + n + 1) 
n = O  / 

(5) but, when v = n is an integer 

I_,(X) = I ,(X) (13) 
(6) 

and Equation 12 is indeterminate, so it is 

X = r(s/D) I/2 (7) 

d2O (1 - 2 v )  dg 
dX 2 + X dX 6 = 0 (8) 

and assume that Equation 8 has a solution of  the 
form 

6 = X'rco (9) 

with a suitable choice for 7- Successive differen- 
tiation of  Equation 9 and substitution back into 
Equation 8 gives 

_ _ d  2 co + (27 -- 1 -- 2p) dco 

dX 2 X dX 

Now, choosing 3' such that 

27 + 1 -- 2u = 1 

i.e. 3 , = v  

Equation 10 becomes 

d=co l d c o  0 v2) 
- -  + - -  - -  2 X dX + ~  co = 0 (11) 

which is a modified Bessels equation, the solutions 
to which [10, 14] are Iv(h), I_v(X) and Kv(X) with 
no restrictions on v, all of  which are real when v is 
real and X is positive. Now I_+v(X) --> oo as X -+ oo 
while Ku(X) -+ 0 as X --> ~ and the physics of  the 
situation demands that 

~ -> 0 as X--> oo, i.e. r-+ oo 

since the concentration of  injected marker must 
ultimately fall to zero at large enough radius. The 
appropriate solution to Equation 11 is therefore 
given by Ku(X). 

When u is not  an integer or zero, 

necessary [10] to take 

Kv(X) = lim Kv(X) = ( - -1 )  n l l  3I-v 3Iv] 

(14) 

from which the value for v = n = 0 can also be 
obtained [10]. With the definitions of  Equations 
12 and 14Kv is an entire function o fu  and the 
solution of  Equation 8 is, therefore 

a = AX Kv(X) ( lS)  

with no restrictions on v. 
If  a step in concentration is made at r = ri, i.e. 

c = c o or 6 = c~ at r = f i  
s 

then from Equation 15 

6 =  c ~  v Kv[r(s/D)U2] 
s G [r (slb) ] (16) 

with u = Q/4rrb, since X = r(s/D) u2 , and for a 
delta function in concentration 

e = Co 1" (17) 

In general the Laplace inversion of  Equation 17 is 
difficult; note, for example, that, as u = Q/4zrD, 
both the order and the argument are unknown 
and, under typical experimental conditions (see 
Part II), u can be large. However it is possible to 
obtain the inverse for some simple cases, which is 
useful as a check on the reasonableness of  the 
simple model. 

3. Explicit solutions of Equation 17 

Consider the function Kv(X) = Kv(qr), where 
q = (s/D) 1/2 . The asymptotic expansion of Kv(z) 
for larg zl < (3/2)rr is [141 
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/ r  =  27J exp - q r  1 + 

+ 

(4v 2 -- 12) 

l!(8qr) 

(4v: -- 1)(4v 2 -- 3 2) 
2!(8qr)2 (18) 

5 8qr7 . . . .  

Clearly this series will truncate for certain half- 
integer values of v. Since there is no restriction on 
v, assume, for example, that v = 3/2, when 

Ka/2 (qr) 

K312 (qr i )  (19 )  

a3 ~ a 4  . 
+ ~ -  e r i c  x - - ~ l  erfcx 

asi2 erfcx a6ia erfcx 
+ ~-a x s 

a~i4 e r f c x - -  ) -t-~-g . .  . (21) 

Clearly the series will converge most rapidly for 
large x and for r of the same order as r i, i.e. short 
time delays, small values of dispersion and small 
radial expansions. 

I fq r  i < 1 then, for v = 3/2, Equation 17 can be 
put in the form 

�9 / r \ 3 : 2  - - ( r - - i r ) ' / e e x p [ - - q ( r - - r i ) ( l + l ) ( l + l ~ ) - '  ] .  ~ = C o t ~  } 

For the case o f q r  i > 1 this can be expanded 
immediately to give 

Kaz2(qr) - " (1 + 1 

( 1 1 1 )] 
x 1 - - - - + - -  + 

q ri qar~ qr i 2 2 " " " 

which can be substituted into Equation 17 to give 

(1 1 1 1 )]} 
x F - -  - - - F  

,q q2ri q r 2 q4r~ " ' "  

which can be inverted term by term to give 

Coir  \ [  x 2 
- 

( r - - r i )  2 1 (r--ri)~ 1 erfcx 
rri 2rrl;2 x e x p - - x  2 + rri= 4x 2 

(r--  ri) 4 1 
rr~ 4x-g i erfc x 

(r  - -  r i )  s I i2 ] + ~ erfc x -- (20) 
r r  i 4x  4 ' ' '  J 

where x = (r --  ri)/2(Dt) 1/2 and i n erfc x is the 
nth integral of  the error function. Equation 20 can 
be written more conveniently as 

c t =  { r l [ a  1 e x p - - x  2 - - - - e x p - - x  2 
Co Vil  x 

[ _  . . (qr + 1) [ r  i '~a/21 
exp [ 

= co exp ( -  q(r  - ri) [1 + q(r - ri) 

- q2ri(r - ri) + qar i ( r - -  ri) - - . . . ]  }. 

As before, inverting term by term gives 

( c ) t  1 { [ 
Co - 2 - - ~ e x p  - - x  2 H l ( x ) + x H 2 ( x )  

or  

Co 2rrl/2 exp {--x 2 [alHa(x) + a2H2(x) 

- -  aaH3(x) + a4H4(x) - - . . .  ] } (22) 

where H , ( x )  is the nth  order Hermite polynomial 
of argument x = (r --  r i) /2(Dt) 1/2 . Since, in 
general, the modulus of  Hn (x)  increases rapidly 
with x ,  Equation 22 will converge most rapidly for 
small x and r >> r i, i.e. long time delays, large values 
of  dispersion and large radial expansions. 
Equations 21 and 22 are therefore complementary. 

For values of  v greater than 3/2 equations of 
.the same form as Equations 21 and 22 are 
obtained but the simple structures for the coef- 
ficients an are lost, although the same limiting 
conditions apply. 

4. Numerical calculation of generalized response 
curves 

Fig. 2a shows a plot o f (c /Co) t  versus 
x = ( r - - r i ) / (D t )  1/2 for (r/ri) = 4, ri = 1 cm, and 
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c.t 
% 
sec 
0.4 

0.3 

0.2 

0.1 

c.1 
~5 

c m-2s 

0,2 

0.1 

',---~ Equation 21 

Equation / / ~  

22 \ /  
1 2 

(b) 

4 ; ; 1'0 12 1'4 

v = 3/2, calculated using Equations 21 and 22 for 
various assumed values o f x .  There is only a small 
region, 0"6 < x  < 0"9, for which neither  series 
converges adequately within 20 terms at this radius 
ratio. As (r/ri) decreases the range of  applicabil i ty 
of  Equation 22 increases, while, conversely, as 
(r/ri) increases Equation 21 is applicable over a 
wider range. 

From the definition o f x  it is clear that 

( r  - -  r i)  2 = C-o~ 

and 

( r - - r i ) 2  - / g t  (24 )  
4 x  2 

so the data in Fig. 2a can be transformed into a 
plot  o f  (c/co)(1/D)versus Dt,  as shown in Fig. 2b; 
this is a generalized response curve to a delta- 
function pulse at t = 0, r i = 1 cm, for 
v = 3/2 = Q/47rD, i.e. Q = 6zrD cm 3 s -1 cm - I  . In 

';'6 B~ccm 2 

Fig. 2. (a) Numerical simulation o f  
(C/Co)t versus x using Equations 21 and 
22. (b) Transformation of  (a) into a 
generalized response curve. 

constructing this curve two points have been 
interpolated from Fig. 2a in the range 
0.6 < x < 0"9, i.e. the region where no solution 
to the general equation could be found. 

In form, Fig. 2b shows a sharp rise after a short 
delay, followed by  a long tail, and is markedly 
different to the skew-Gaussian shape of  dispersive 
plug flow in a parallel channel [13] ; in particular 
it should be noted that even this simple model  
predicts that  some species have a residence time 
in the cell an order longer than the mean time. 

The influence of  increasing v = Q/47rD on the 
response curves was investigated by calculating the 
analagous equation to Equation 21 for v = 1/2, 
3/2, 5/2 and 7/2, assuming (r/rl) = 20 and 
r i = 1 cm to ensure convergence for 0"25 < x < 3, 
which covered the range of  interest.  Even so, up to 
30 terms had to be retained in some cases. Fig. 3 
shows the normalized generalized response curves. 
For the sake of  clarity the unnormalized curves 
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t C/Co0j 
[C/Cofi~ 

1.o 

0.8 

0.6 

0.4 

0.2 

I00 200 300 400 - 600 
O t./cm2 

Fig. 3. Synthesized response curves for various values of v = Q/4rrD. 

are n o t  shown,  bu t  as z, decreases ( i nc reas ing /3  at  

c o n s t a n t  Q or  increas ing  Q at cons t an t  13) the  

ca lcula ted  curves b r o a d e n  and  decrease in he igh t ,  

w h i c h  u l t ima te ly  sets t he  l imi t  o f  de t ec t ab i l i t y  in  

the  expe r imen t s  (see Par t  II).  I t  is also clear,  

however ,  t h a t  the  skewness  o f  the  curves  depends  

on  ~, w i t h  a p r o f o u n d  e f fec t  on  the  res idence t imes  

o f  the  species in  the  tail .  

Deta i led  discussion o f  e x p e r i m e n t a l  resul ts  will  

be p re sen ted  in Par t  II, howeve r  the  reasonableness  

o f  the  t h e o r y  can be  seen quan t i t a t i ve ly  b y  

c o m p a r i n g  Fig. 3 w i t h  Fig. 4,  t he  resul ts  o f  evoked  

o r b .  

(a) 

I 

0 30 s 

(b) 

arb. 

\ 
F 

o 

8 

30 s 

Fig. 4. Experimental response curves for 
geometrically identical (a) capillary gap cell and 
(b) pump cell under similar conditions [8]. 
Curve 1, (Re) = 0.926 • 104 , (Re)q) = 0; curve 2, 
(Re) = 1.389 • 104 , (Re)q) = 0; curve 3, 

- -  (Re) = 1-852 • 10*, (Re)q) = 0; curve 4, 
(Re3 = 2.808 • 104 , (Re)q) = 0; curve 5, 
(Re) = 3.704 • 1 0  4 , (Re)q) = 0; curve 6, 
(Re) = 0.926 • 1 0  4 , (Re)q) = 6-209 • 104 ; curve 7, 
(Re) = 1.852 X 1 0  4 , (Re)q) = 6-209 X 104 ; curve 8, 
(Re) = 3.704 • 104 , (Re)q)= 6-209 • 104 . 
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response experiments [8] in geometrically 
identical capillary gap (Fig. 4a) and pump cell 
(Fig. 4b). Clearly the theoretical and experimental 
curves have the same general shapes, especially in 
the case of  the pump cell where the mixing due to 
the tangential shear produces a more uniform axial 
velocity profile. 

5. Numerical analysis o f  data 

In principle it is possible to invert Equation 17 for 
all values of  v using the definitions in Equations 
12 and 14 forKv and to find the best fit of  the 
experimental data to a library of  computed 
functions, thus finding v, hence/3. However this 
process would be very inefficient and probably 
not unambiguous, given the errors due to trun- 
cation of  the function and noise in the response 
signal. Further, /3 can only be obtained from v 
if Q is unambiguous, i.e. the flow is truly plug-like, 
which is not so (see Section 6). An alternative 
strategy is to proceed via moment  analysis. 

6. M o m e n t  analysis 

The moments  of  the response are given by 

-1  

mo = ..9" (g/s) 
s.-->O 

(2s) 

where &is now the response to a delta-function, 
i.e. defined by Equation 17 

and 

ml  = -- (dg/ds)8-+0 = ; tc dt 
0 

m2 = (d2g/ds2)8._,o = f t2cdt.  
0 

The normalized moments  are therefore 

(26) 

(27) 

M1 = ml /mo  (28) 

and 

M2 = rn2/mo. (29) 

Thus what is needed is the first and second 
differential of  KvO,) as X -+ 0. Since in general v is 
large, Kv(X) approximates to I-v(X) under these 
conditions (see Equation 12): 

77 

K~(X) ~ 2 sin vrr I-v(X) 
(30) - 

2 sin mr(X/2 )vn~=o n!P(S-v-~n + 1) 

Writing r(s//3) 1/2 = qr one obtains 

1 (qr/2) 2 
k 

P(1 v) P ( 2 - - v )  
• 

(qri/2)2 1 ~- 
F ( 1 - - v )  P ( 2 - - v )  

o r  

[1 q (r2 - - r ? )  s g Co ( 4(1 -- v) /3 

+ 

(qr/2)4 ] 
4 2 F ( 3 - - v )  + ' ' "  

-t (qri/2)4- + . . . ]  
217(3 -- v) J 

[(1 -- v)r 4 -- (4 -- 2v)r2r~ + (3 -- v)r~ l 

32(2 --  v)(1 -- v) 2 

where use has been made of  the recurrence 
relations of  gamma-functions [14]. From Equation 
31 it is clear that  

and 

M2 

mo = Co 

l(d ) 
M 1  ~ - - - -  

mo s~o  

1 

(32) 

(r  2 
(33) 

4 ( 1  - v ) D  

.(34) 

[(1 -- v)r 4 -- (4 -- 2v)r2r~ + (3 --  v)r 4] 
16(2 --  v)(t  -- v)2/32 

Using the definition of  v, Equation 33 becomes 

(? - 4 )  
M 1  ~ 

4(1 -- O/4Tr/3)/3 

and if Q >> 4rr/3 

M1 ~ 7r(r 2 -- r?)/Q = r (35) 

i.e., if the plug flow model is valid the first 
moment  of  the response should approximate to the 
volumetric residence time for plug flow. It will be 
shown in Part II that the residence time of  the 
marked fluid close to the electrode in a practical 
electrolyser may be as much as two orders o f  
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magnitude greater than the mean volumetric 
residence time, so that even if the marked material 
proceeds in a plug flow it cannot be the same plug 
flow as the majority of the electrolyte, i.e. a better 
model is of two plug flows, one fast one slow. The 
difficulty now is that Q for the slow, marked flow 
is undetermined, however it can be eliminated by 
combining the first and second moments to give 
an expression for/3 without explicit dependence 
on Q: 

3 = 
( :  - - r ? )  

(r 2 + r~) Mr  ~- (36) 

4M1 1 + (r 2 - - r ~  (M2 -M~)J 
Equation 36 allows an evaluation of experimental 
data as if it were due to a plug flow (of unknown 
thickness) proceeding down the wall, and 
Equation 35 need no longer be obeyed strictly, i.e. 
the residence time of marked material is no longer 
assumed to be identical with the average volumetric 
residence time. This is a simplification of the same 
order as replacing the real mass transport boundary 
layer with a Nernst diffusion layer, which is an 
equivalent boundary layer, and, similarly, it allows 
the systematic evaluation of experimental data as 
will be shown in Part II. It has been shown that, in 
general, very many electrochemical reactors can be 
described by two-phase models [12, 13]. 

7. Radiai inflow 

If the direction of the flow is reversed so that it 
moves towards the centre (sink flow) then the 
analagous equation to Equation 2 is 

3c /3a=c /33c Q ~e 
-- = + - - -  + - -  -- (37) 

8t 8r ~ r 3r 2~rr 3r 

which transforms to 

--d2c4 ( l + 2 v )  d~ s 
dr 2 r dr D ~ = 0 (38) 

where v = Q/4n/3. 
Using X = r(s/D) 1/~ as before, but now assuming 
a solution of the form 

= X-roe (39) 

one obtains 

d2w + l d W d x  2 X--d-X-- ( 'v2 )h- 1+7-~ a~ = 0 (40) 

as before (Equation 11). The appropriate solution 
is now Iv, which tends to a finite limit as r ~  0, 
rather than Kv which tends to infinity, so the 
response to a step function injected at r = ro is 
given by 

= C~ v -  Iv[(s//3)l/2r] (41) 

s Iv [(s//3)l/2ri] 
Proceeding to the moments as before one obtains 

(to - : )  
/3 = {(r2o +r2) M~ } (42) 

4M1 ,(r2 ~ _r=) (M2 - M r )  1 

again enabling 13 to be estimated from the 
moments. 

8. Experimental results 

Fig. 4 shows the response curves for geometrically 
identical capillary gap (disc-stack) and pump cells 
obtained under the same conditions of volumetric 
flow rate. Clearly the shapes of the responses are 
different in the two cases, those for the pump cell, 
where the coupling of tangential swirl has made 
the axial velocity profile more uniform [8], being 
noticeably more plug-like and quite similar in 
form to the theoretical shapes of Figs. 2 and 3. The 
analyses of these and other responses will be dis- 
cussed more fully in Part II, but it is clear that the 
plug-flow model provides a basis on which to 
proceed provided that plug flow is not considered 
to fill the entire inter-electrode gap. 

9. Summary and conclusions 

A simple dispersive plug-flow model has been 
developed which permits the estimation of an 
effective dispersion coefficient through the first 
and second moments of the response curve for a 
pulse of electrogenerated species at the wall. The 
ratio of the first moment of the response curve to 
the mean plug-flow residence time gives an esti- 
mate of the segregation of the fluid in such 
systems. An improved model of fast and slow 
phases with mass exchange between them, arising 
out of this first order model, is receiving attention. 
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